安渡视点 | 一文读懂生物药的免疫原性评估
安渡生物结合相关的指导原则和对免疫原性研究的经验在此对免疫原性的风险预测、风险识别、风险管控以及评估报告的撰写申报等方面作个简要的介绍。


针对生物药本身,可在分子设计阶段通过一系列的“去免疫”方法来降低免疫原性风险。例如抗体的PEG修饰、人源化或者全人源单克隆抗体等传统方法;以及敲除突变容易形成聚集的氨基酸序列、增强二元替换(ABS)等一些新的方法[9]。
APC细胞通过胞吞作用吸收抗原(此处为生物药)并将关键性肽段呈递到细胞表面,供T细胞进行识别并激活。因此,从候选生物药中提前识别出特征肽段(T细胞表位)将有助于控制免疫原性的风险。计算机模拟的方法已经被用于T细胞表位的预测[10]。计算机模拟不需要进行真实的试验且具有很高的筛选通量,对于识别T细胞表位有一定优势,但其它可能引起免疫原性的因素,例如表位-MHC复合体的亲和力、表位的生物学功能等,是不能通过计算机模拟算出的,所以还是需要以体外试验等方法来进一步确认。相较于T细胞表位的预测和识别,有关B细胞表位的预测和识别技术文献报导还比较少,初始B细胞的体外培养半衰期较短,难以在体外对B细胞免疫反应进行有效评估。
作为重要的APC细胞之一的树突状细胞(DC)可以特异性的激活初始T细胞,进而促进B细胞群的成熟和转换,最终导致ADA的产生。因此,了解清楚生物药对于DC细胞的激活能力,可以用来进行免疫原性风险预测。通常做法是用血单核细胞诱导的DC细胞来进行分析,例如与其它的诱导物(如脂多糖LPS)共孵育来诱导并检测DC细胞的成熟,然后利用流式细胞仪检测细胞表面的反应细胞状态的标志物,或者在RNA或蛋白水平分析细胞因子的释放等等。
在生物药的非临床药代动力学实验和毒理实验中也会检测针对生物药的免疫原性。但是,动物模型只能反映免疫原性产生的部分因素,无法涵盖在临床患者中的绝大部分因素,例如人类T细胞的HLA限制性、潜在疾病、遗传背景、免疫史、免疫治疗史等,因此动物模型的免疫原性数据,不能用于预测临床试验中针对生物药的ADA的发生率。但可用于诠释动物体内药代动力学的数据和毒理实验的结果。
总之,我们可以通过计算机模拟分析、体外实验和动物实验,或与同类靶点产品进行对比,做有限的预测,但目前还没有任何一种方法可以准确预测某种药物在人体内引起的不良免疫反应。尽管如此,我们还是可以根据生物药的类型大致推断产生免疫原性的风险。一般来讲,人源化或人源的单抗药物风险相对较低,双抗等引入了新抗原的多结构域,引起免疫原性的风险相对较高,而含有内源性片段的融合蛋白或蛋白酶为高风险药物。
-Sep-28-2023-01-27-59-7273-PM.png?width=590&height=676&name=640%20(3)-Sep-28-2023-01-27-59-7273-PM.png)
-
Food and Drug Administration. Guidance for Industry: Immunogenicity assessment for therapeutic protein products. U.S. Department of Health and Human Services, Food and Drug Administration. 2014. -
European Medicines Agency. Guideline on immunogenicity assessment of therapeutic proteins. European Medicines Agency. Rev 1 2017. -
Food and Drug Administration. Immunogenicity Testing of Therapeutic Protein Products — Developing and Validating Assays for Anti-Drug Antibody Detection. U.S. Department of Health and Human Services, Food and Drug Administration.2019. -
国家药监局药品审评中心《药物免疫原性研究技术指导原则》,2021年3月. -
Gupta S , Indelicato S R , Jethwa V , et al. Recommendations for the design, optimization, and qualification of cell-based assays used for the detection of neutralizing antibody responses elicited to biological therapeutics[J]. Journal of Immunological Methods, 2007, 321(1-2):1-18. -
Li J , Yang C , Xia Y , et al. Thrombocytopenia caused by the development of antibodies to thrombopoietin[J]. Blood, 2001, 98(12):3241-3248. -
Casadevall N, Nataf J, Viron B, et al. Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin. N Engl J Med. 2002;346(7):469-475 -
Tourdot S, Hickling T P. Nonclinical immunogenicity risk assessment of therapeutic proteins[J]. Bioanalysis, 2019, 11(17):1631-1643. -
Sue, Townsend, Brian, et al. Augmented Binary Substitution: Single-pass CDR germ-lining and stabilization of therapeutic antibodies.[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015. -
Yogurtcu O N , Sauna Z E , Mcgill J R , et al. TCPRO: An In-Silico Risk Assessment Tool for Biotherapeutic Protein Immunogenicity[J]. Biophysical Journal, 2019, 116(3). -
Shankar G , Devanarayan V , Amaravadi L , et al. Recommendations for the validation of immunoassays used for detection of host antibodies against biotechnology products[J]. Journal of Pharmaceutical and Biomedical Analysis, 2008, 48(5):1267-1281. -
Devanarayan V , Smith W C , Brunelle R L , et al. Recommendations for Systematic Statistical Computation of Immunogenicity Cut Points[J]. AAPS Journal, 2017, 19(5). -
Passey C , Suryawanshi S , Sanghavi K , et al. Reporting, Visualization, and Modeling of Immunogenicity Data to Assess Its Impact on Pharmacokinetics, Efficacy, and Safety of Monoclonal Antibodies[J]. AAPS Journal, 2018, 20(2):35. -
Shankar G , Arkin S , Cocea L , et al. Assessment and reporting of the clinical immunogenicity of therapeutic proteins and peptides-harmonized terminology and tactical recommendations.[J]. AAPSJournal, 2014, 16(4):658-673. -
Rup B , Pallardy M , Sikkema D , et al. Standardizing terms, definitions and concepts for describing and interpreting unwanted immunogenicity of biopharmaceuticals: recommendations of the Innovative Medicines Initiative ABIRISK consortium[J]. Clinical & Experimental Immunology, 2015, 181.